Resolving differences in mass tables in predictions for the production of elements 119 and 120
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There are significant discrepancies in theoretical predictions of the excitation functions for the
synthesis of elements 119 and 120. Many of the predictions use different mass tables, and this has led to
questions about the optimum excitation energy and optimum projectile energy for producing them. To
understand this effect, we have corrected published excitation functions to use the same mass model. In
this work, data from published predictions were shifted to consistently use the mass model by Moller et
al. [1]. Changes in cross sections caused by the changes in excitation energy were outside the scope of
this work.

Literature was reviewed to find excitation functions for the production of elements 119 and 120.
The data were digitized using Graph Grabber 2.0 [5] and each exit channel was analyzed. The projectile
energy was determined using the mass table listed in the reference and then the corresponding excitation
energy was calculated using the Moller et al. mass table. In some cases, there was a clear distinction
between the literature data and the revised data. For example, the Kowal ef al. mass table [3] had a 3.58
MeV difference from Méller et al.’s [1] predicted mass of element 120 for the *Cr + ***Cm reaction,
which caused a change in the Q-value for compound nucleus formation and led to a difference in
excitation energy. In other cases, the difference was not as large, mainly due to many of the sources using
Moller et al.’s 1995 mass model [2], which had only slight adjustments compared to their 2012 mass
model.

There were a total of nine element 119 and eleven element 120 reactions analyzed and
preliminary results are reported here. Figs. 1-16 show the initial excitation functions and their
corresponding adjustments for the 2n-5n exit channels of both the element 119 and element 120 reactions.
The adjustment of mass tables generally caused the predictions to be in better agreement, showing that the
differences are generally due to variations in the mass model used. More accurate predictions for the
production of elements 119 and 120 could possibly be made if the same mass table were used. This
procedure could potentially be repeated for even heavier elements, which would allow for better planning

of future new element searches.
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Fig. 1. Element 120 2n predictions before correction.

Z=120 2n Exit Channel Adjusted to Maller (2012) Mass Table
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Fig. 2. Element 120 2n predictions after correction.
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7= 120 3n Exit Channel
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Fig. 3. Element 120 3n predictions before correction..

Z=120 3n Exit Channel Adjusted to Moller 2012
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Fig. 4. Element 120 3n predictions after correction.
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Z= 120 4n Exit Channel
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Fig. 5. Element 120 4n predictions before correction.
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Z=120 4n Exit Channel Adjusted to Moller 2012
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Fig. 6. Element 120 4n predictions after correction..
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Z=120 5n Exit Channel
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Fig. 7. Element 120 5n predictions before correction.

Z=120 5n Exit Channel Adjusted to Moller 2012
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Fig. 8. Element 120 5n predictions after correction.
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Z=119 2n Exit Channel
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Fig. 9. Element 119 2n predictions before correction.

Z=119 2n Exit Channel Adjusted to Maller (2012) Mass Table
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Fig. 10. Element 119 2n predictions after correction.
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Z=119 3n Exit Channel
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Fig. 11. Element 119 3n predictions before correction.

Z=119 3n Exit Channel Adjusted to Moller 2012
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Fig. 12. Element 119 3n predictions after correction.
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Fig. 13. Element 119 4n predictions before correction.
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Fig. 14. Element 119 4n predictions after correction.
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Z=119 5n Exit Channel
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Fig. 15. Element 119 5n predictions before correction.

Z=119 5n Exit Channel Adjusted to Moller 2012
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Fig. 16. Element 119 5n predictions after correction.
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